Convergence of Time-Stepping Schemes for Passive and Extended Linear Complementarity Systems

نویسندگان

  • Lanshan Han
  • Alok Tiwari
  • M. Kanat Camlibel
  • Jong-Shi Pang
چکیده

Generalizing recent results in [M. K. Camlibel, Complementarity Methods in the Analysis of Piecewise Linear Dynamical Systems, Ph.D. thesis, Center for Economic Research, Tilburg University, Tilburg, The Netherlands, 2001], [M. K. Camlibel, W. P. M. H. Heemels, and J. M. Schumacher, IEEE Trans. Circuits Systems I: Fund. Theory Appl., 49 (2002), pp. 349–357], and [J.-S. Pang and D. Stewart, Math. Program. Ser. A, 113 (2008), pp. 345–424], this paper provides an in-depth analysis of time-stepping methods for solving initial-value and boundary-value, non-Lipschitz linear complementarity systems (LCSs) under passivity and broader assumptions. The novelty of the methods and their analysis lies in the use of “least-norm solutions” in the discrete-time linear complementarity subproblems arising from the numerical scheme; these subproblems are not necessarily monotone and are not guaranteed to have convex solution sets. Among the principal results, it is shown that, using such least-norm solutions of the discrete-time subproblems, an implicit Euler scheme is convergent for passive initial-value LCSs; generalizations under a strict copositivity assumption and for boundary-value LCSs are also established.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Regularized Time-Stepping Methods for Differential Variational Inequalities

Abstract. This paper provides convergence analysis of regularized time-stepping methods for the differential variational inequality (DVI), which consists of a system of ordinary differential equations and a parametric variational inequality (PVI) as the constraint. The PVI often has multiple solutions at each step of a time-stepping method and it is hard to choose an appropriate solution for gu...

متن کامل

Newton iterations in implicit time-stepping scheme for differential linear complementarity systems

We propose a generalized Newton method for solving the system of nonlinear equations with linear complementarity constraints in the implicit or semi-implicit time-stepping scheme for differential linear complementarity systems (DLCS). We choose a specific solution from the solution set of the linear complementarity constraints to define a locally Lipschitz continuous right-hand-side function in...

متن کامل

Convergence of a Class of Semi-Implicit Time-Stepping Schemes for Nonsmooth Rigid Multibody Dynamics

In this work we present a framework for the convergence analysis in a measure differential inclusion sense of a class of time-stepping schemes for multibody dynamics with contacts, joints, and friction. This class of methods solves one linear complementarity problem per step and contains the semi-implicit Euler method, as well as trapezoidallike methods for which second-order convergence was re...

متن کامل

A General Solution for Implicit Time Stepping Scheme in Rate-dependant Plasticity

In this paper the derivation of the second differentiation of a general yield surface implicit time stepping method along with its consistent elastic-plastic modulus is studied. Moreover, the explicit, trapezoidal implicit and fully implicit time stepping schemes are compared in rate-dependant plasticity. It is shown that implementing fully implicit time stepping scheme in rate-dependant plasti...

متن کامل

An Implicit Time-Stepping Method for Multibody Systems with Intermittent Contact

In this paper we present an implicit time-stepping scheme for multibody systems with intermittent contact by incorporating the contact constraints as a set of complementarity and algebraic equations within the dynamics model. Two primary sources of stability and accuracy problems in prior time stepping schemes for differential complementarity models of multibody systems are the use of polyhedra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2009